What can spike train distances tell us about the neural code?
نویسندگان
چکیده
Time scale parametric spike train distances like the Victor and the van Rossum distances are often applied to study the neural code based on neural stimuli discrimination. Different neural coding hypotheses, such as rate or coincidence coding, can be assessed by combining a time scale parametric spike train distance with a classifier in order to obtain the optimal discrimination performance. The time scale for which the responses to different stimuli are distinguished best is assumed to be the discriminative precision of the neural code. The relevance of temporal coding is evaluated by comparing the optimal discrimination performance with the one achieved when assuming a rate code. We here characterize the measures quantifying the discrimination performance, the discriminative precision, and the relevance of temporal coding. Furthermore, we evaluate the information these quantities provide about the neural code. We show that the discriminative precision is too unspecific to be interpreted in terms of the time scales relevant for encoding. Accordingly, the time scale parametric nature of the distances is mainly an advantage because it allows maximizing the discrimination performance across a whole set of measures with different sensitivities determined by the time scale parameter, but not due to the possibility to examine the temporal properties of the neural code.
منابع مشابه
Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex
It is often supposed that the messages sent to the visual cortex by the retinal ganglion cells are encoded by the mean firing rates observed on spike trains generated with a Poisson process. Using an information transmission approach, we evaluate the performances of two such codes, one based on the spike count and the other on the mean interspike interval, and compare the results with a rank or...
متن کاملChapter 4 Information Theory
Neural encoding and decoding focus on the question: " What does the response of a neuron tell us about a stimulus ". In this chapter we consider a related but different question: " How much does the neural response tell us about a stimulus ". The techniques of information theory allow us to answer this question in a quantitative manner. Furthermore, we can use them to ask what forms of neural r...
متن کاملInformation Exchange between Pairs of Spike Trains in the Mammalian Visual System
We have studied the neural ring patterns of retinal ganglion cells (RGCs) and their target lateral geniculate nucleus (LGN) cells. Reliable information transmission coexists with fractal uctuations which appear in RGC and LGN ring patterns. Unexpectedly , these uctuations appear not to be independent across LGN cells; information is also shared among pairs of LGN spike trains. Over short time s...
متن کاملMeasures of complexity in neural spike-trains of the slowly adapting stretch receptor organs.
Discrete sequence analysis methods were applied to study spike-trains generated by the isolated neuron of the slowly adapting stretch receptor organ. Calculation of the algorithmic complexity and block entropies of digitized individual spike-train forms allowed us to distinguish different classes of neural behavior. While some spike-trains exhibited significant structure, others displayed diver...
متن کاملInformation Theory 4.1 Entropy and Mutual Information
Neural encoding and decoding focus on the question: " What does the response of a neuron tell us about a stimulus ". In this chapter we consider a related but different question: " How much does the neural response tell us about a stimulus ". The techniques of information theory allow us to answer this question in a quantitative manner. Furthermore, we can use them to ask what forms of neural r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 199 1 شماره
صفحات -
تاریخ انتشار 2011